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Abstract-We suggest that, on present theoretical and experimental evidence, all large scale propagating 
thermal explosions have a detonation-like structure. We examine the effects on such a thermal 
detonation of sideways flow, interphase slip and thermal expansion of the coolant ; the balance of these 
effects at the place in the reaction zone where the flow goes sonic controls the propagation, and hence 
efficiency of the explosion. 

We show that: 
(a) thermal explosions (like chemical explosions) will only propagate if the sideways constraint is high; 
(b) in a detonation in which vapour is generated within the reaction-region (a ‘vapour detonation’) 

the efficiency can be low. We apply a model of this to metal/water explosions, and show that it predicts 
the general characteristics of these events. 

NOMENCLATURE 

the area of contact between 
fuel and coolant ; 
specific heat ; 
velocity of sound ; 
size of particles before 
fragmentation; 
detonation velocity; 
volume of the fuel; 
specific enthalpy ; 
mass flux (j = pv) ; 
Boltzmann constant, 
conductivity; 
length of reaction zone; 
latent heat of evaporation ; 
mass transported between fluids 
in’bnit volume; 
M 

_ mass transport/unit mass 
aiPi’ 

of phase i; 

vapour mass/unit mass of mixture; 
heat flux ; 
gas constant; 

radius of curvature of surface 
orthogonal to the flow; 
specific entropy ; 
temperature ; 
time ; 
vapour blanket thickness ; 
x component of velocity v 
(i.e. parallel to direction 
of propagation) ; 
[vi, velocity in frame of front ; 
specific volume ; 
y component of velocity v; 
thickness of reaction layer (Fig. Al) 
in _V direction. 

Greek symbols 

volume fraction of fluid i; 
thermal diffusivity; 
expansion coefficient; 

ratio of specific heats; 
boundary layer thickness; 
dynamic viscosity ; 

divergence parameter 

(see Appendix C) ; 

for 2-D flow; 

entropy transported by interfluid 
mass transfer; 
density ; 
aP 

-> as ; lj,M’ 
Lagrangian time co-ordinate (measured 
from the crossing of the shock front); 
momentum transported by interfluid 
mass transfer; 

heat flux/unit area ; 
4 Pf 

momentum integral A 
J 

” f3du ; 
ll-ui i 

(see Appendix C) ; 
numerator of pressure gradient 
expression (equation 1). 

Subscripts 

c, the state at which vapour 
generation begins ; 

.L the state at the C-J plane; 

h, fuel phase ; 
4 the initial state ahead of the shock; 

1, coolant liquid phase; 

s, the state just behind the shock ; 
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0, coolant vapour phase; 

1, fluid 1, usually the coolant 
and its vapour ; 

2, fluid 2, usually the fuel. 

Derivatives 

DA 3A 
m 

Dt’z 
A all denote v. grad A + $, the 

convective derivative of A. 

1. INTRODUCTION 

IN CERTAIN circumstances the mixing of a hot 
liquid and a cooler vaporisable one leads to an 
explosive rate of vapour production. Such occur- 
rences could arise if molten metal is poured into 

water [ 1 J, when liquid-natural-gas is spilt at sea [2], 
and also, under extreme fault conditions, in liquid- 

cooled reactors if fuel-melting [3] occurs. 
In such ‘thermal explosions’ we believe that a 

disturbance propagates through a coarse intermix- 
ture of the two iiquids causing fine fragmentation 
and rapid energy transfer [4] ; this energy transfer in 
turn causes expansion of the volatile phase, which 
sustains the propagation. 

In two earlier papers [4, 51 we presented obser- 
vations of propagating thermal explosions, and 
developed a simple model for the form these could 
take in a highly constrained geometry. In such a 
‘thermal detonation’ the energy transfer is initiated by 
a shock front in a manner analogous to a chemical 
detonation. This concept of a propagating, self- 
sustained shock has been confirmed by our recent 
experimental work [6]. 

We now generahse our simple model and consider 
the effects on the propagation of sideways flow, slip 
and the expansion of the mixture (produced by heat 
transfer). We consider how the propagation is 

controlled by the balance of these effects at the plane 
where the flow becomes sonic (i.e. at the 

Chapman-Jouguet or C-J plane), and show that in 
this generalised model detonations can be signi- 

ficantly less efficient than predicted in [5] ; (we found 
there that, when thermal equilibrium is achieved at 
the C-J plane, pressures and energy yields in excess 
of those calculated by Hicks and Menzies [7] could 
result). 

By applying these considerations to a model of 
heat-transfer in a ‘vapour-detonation’ we show how 
temperature disequilibrium in the liquid coolant 
limits efficiency to a degree calculable from experi- 
mental data on transient heat transfer. We show also 
how sideways constraint must be high if detonation- 
like propagation is to be possible. 

In deriving these new results, we make extensive 
use of published work on chemical-reactive flow and 
so begin by considering the analogy between 
chemical-reactive and thermal-reactive flows in 
detail. 

2. CHEMICAL AND THERMAL 
REACTIVE FLOWS COMPARED 

It seems likely that many of the important 
properties of large-scale thertnal explosions can be 

modelled in the hydrodynamics of two-fluid two- 
dimensional reactive flow (see Appendix A). This 
field has been extensively studied in connection with 
chemical engineering and combustion problems. 

Although we may expect parallels between the 
types of flow which could occur in the two areas, 
there are important differences between the way 
chemical-combustion reaction rates and thermal- 
explosion heat transfer rates vary with temperature 
and pressure. This will influence the relative impor- 
tance of the two steady-state modes (detonation and 
deflagration) in the two cases. 

2.1 Tkr dt$agratinn mode 
In deflagration waves the propagation speed is 

subsonic; such chemical explosions can be con- 
sidered temperature-controlled (more correctly, con- 
trolled by the migration of excited species ahead of 
the flame front). There appear to be several reasons 
why thermal explosions should not sustain stable 
deflagrating waves. Firstly, the equivalent subsonic 
initiating mechanism appears to be the temperature 

rise in the surrounding coolant caused by the 
diffusion of heat away from the energy release zone. 
Such a rise would however increase the stability of 
film boiling; moreover the fall in pressure which 
occurs through a deflagration wave, would enhance 
this stability and impede energy transfer. Secondly, 
thermal reactions are triggered by quite small 
pressure and velocity changes [4] ; by contrast, most 
chemical reactions do not proceed at a significant 
rate below tenlperatLIres of XOOK and to achieve 
these, even in shocks. pressure changes of tens of 
bars are required. We thus expect that the transition 
from deflagration to detonation, which is often 
observed in the chemical case, would happen much 

more easily for thermal explosions. For instance 

reinforcenlent of the precursor shock (e.g. by re- 
flection) may lead to direct initiation of a new 

reaction zone close to the shock. Alternatively it 
seems likely that the reaction zone, being controlled 
only by the pressure and velocity fields could move 
forward and join with the precursor shock such a 
coalescence is a detotlat~on [S]. We thus suggest that 
the deflagration mode has no stable analogue in 
thermal explosions. 

Our suggestion that only detonations have ther- 
mal explosion analogues implies that ail large scale 
thermal explosions propagate supersonically through 
the medium ahead of them. This conclusion is 
supported by the velocities observed experimentally 
(- 104cm/s, [4,9]); these are of the order of sound 
velocities in two-phase media; recent observations 
in freon/water and tinjwater systems confirm the 
presence of this supersonic front [6]. We consider 
the structure of the wave in detail. 

The leading edge of such a front is a shock, in 
which the dominating mechanism controlling the 
width is probably the pressure induced collapse of the 
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vapour phase--because of heat conduction away 
from the liquiddvapour interface, this is inherently 

an irreversible process. (We note in passing that the 
vapour phase need not be a stable vapour film- 
nucleate-boiling bubbles would behave similarly.) 
The collapse stage will be completed before any 
significant heat transfer from fuel to coolant can 
occur, and so it should be permissible to analyse the 
explosion in a manner similar to the chemical case, 
as a discrete initiating shock in the unreacted 

material, followed by an energy release zone. (The 
effects of energy release occurring within the shock- 
region have been considered by Fishlock [lo]). 

In the reaction zone behind the shock, the flow (in 
the frame of the front) is subsonic. The effect of the 
heat transfer into the coolant is, as we discuss 
further below, to cause expansion and allow a drop 
in pressure, which thus increases the Mach number 
of the flow. If the flow eventually reaches sonic 
velocity the choking point (C-J point) thus formed 
isolates the shock and heat transfer zones from the 
subsequent expansion of the products, and enables 

the wave to travel at a steady velocity. Now in both 
chemical and (probably) thermal explosions the 
reaction or heat transfer rates are considerably 
reduced when the materials are allowed to expand 

rapidly (in the former case because the temperature 
drops, in the latter because of vapour blanketing). In 
both cases therefore the rarefaction wave at the 
leading edge of the expansion zone probably ter- 
minates the energy transfer-only the presence of a 
sonic point prevents it extinguishing the whole 
reaction. If it can be shown that the energy 
transferred in the steady-state region is small, it is 
then likely that the overall efficiency is small. (This 

would break down however if the inertia1 constraint 
were so high that the final expansion could be 
adiabatic.) In a well-constrained chemical explosion 
it is usually true that the reaction is complete at the 
C-J plane and so the explosion makes full use of the 
available energy-this is not necessarily so however, 
expecially when sideways flow is allowed or the 

reactants are not in internal temperature 
equilibrium. 

3. THE BALANCE CONDITION 
AT THE C-J PLANE 

The work of Wood and Kirkwood [ll, 121 and 
others showed that the necessary condition for the 
CJ plane to terminate the steady state region is that 
the gradients of the flow variables (dP/dx, du/dx, 
etc.) are indeterminate there (so that there is no 
inconsistency with the adjoining time-varying ex- 
pansion zone). In Appendix A we derive an 
expression for the pressure gradient for a two-fluid 
model with sideways flow. This is of the form 

(equations A8, A9) 

dP x 
,,=2 u -c 3 

(1) 

where x contains terms giving the rate of change of 

HMTVol ?LNo 7 Ci 

pressure at constant volume; for indeterminacy, 
x = 0 and u = c. The following terms contribute to x: 

(i) The heat flow into the more volatile fluid gives 
a positive term to 1; this leads to a negative pressure 
gradient which accelerates the subsonic flow behind 

the shock front; 
(ii) The sideways flow out of the reaction zone; 

this gives a negative term to x and so acts to prevent 
acceleration of the flow and to balance the effects of 

heat transfer; 
(iii) The re-equilibration of the velocity between 

the phases also gives a negative term to ): (and so 
also opposes heat transfer). (The existence of slip 
however also complicates the meaning of ‘c’ in the 

denominator, see below.) 
In well-constrained chemical reactions only the 

chemical-reaction term (analogous to (i)) is signi- 

ficant, and this term only vanishes when the reaction 
ceases. In thermal explosions, however, the heat 
transfer term is not the only significant one, nor need 
its contribution always be positive. We consider 
below the role of (i) and (ii), and more briefly (iii). 

4. THE STRUCTURE OF THE 
ENERGY-TRANSFER REGION 

4.1 The effects of vupour blanketing-u ‘vapour 
detonation’ model 

In the explosion heat flows steadily from fuel to 

coolant, but its effectiveness in producing expansion 
may vary considerably, especially when vapour is 
present. When the coolant is single-phase or when 
the coolant has no temperature gradient within it, 
the expansion produced is usually positive. However, 
when vapour blankets form in an initially sub-cooled 
liquid, the expansion rate can become zero or 
negative whilst heat transfer continues, if recon- 
densation effects at the vapour-liquid interface 
become important. (Such effects have been observed 
for instance in the experiments of Board et al. [ 131.) 

Clearly, when vapour forms, the fraction of the 
heat flux going into vapour production controls the 
expansion rate; this flux Q,, is provided by the excess 
of that (Q& out of the fuel over the flux (Qi) 
conducted away into the subcooled portion of the 
coolant, so Qr = Qh-Q!. The latent heat of for- 
mation L of the mass of vapour m is the main 

contribution to Q,,, and so Q,. = Ltir. We show in 
Appendix B that the C-J condition is reached when 
vapour condensation balances the liquid-phase ex- 
pansion and the flow becomes sonic at an effective 
speed of sound (PV’/AV)“’ where AVIV is the 
vapour fraction (equations 84, B5). Now Q,, can 

vanish (or become negative) if vapour-blanketing 
reduces Qh sufficiently rapidly whilst the subcooling 
remains high, sustaining QI; if this condition occurs 
well before equilibrium the efficiency would be low. 
Board et al. [13] found that on rapidly heating metal 
foils, vapour films about ten microns thick grew in 
- 100~s and the expansion then stopped, despite 
continuing heat flux. We may use these results, which 
applied under both acoustic loading and constant 
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pressure conditions, to construct a simple model of a 
typical metal/water explosion [4,5]. It follows from 
the expression for the speed of sound (equation B8 
and Fig. 2) that the vapour volume at the C-J plane 
AYf is about half that ahead of the shock; the 

explosion, if it is to be stable, must adjust its 
propagation pressure to achieve this (see Appendix B 

and D). The volume AVf is the product of interphase 
area A and the vapour blanket thickness t’, so 

At’ = AVJ = ;Al$ (2) 

For an initial equal volume mixture of tin/water and 

vapour, the C-J vapour volume AV, would therefore 
be -O.lccgm-i. If we take t’ = lOurn, then the 
fragmented area A would be about 102cm2 grn-’ 
(30um fuel particle size), and the heat transferred in 
100 us would be about 10 J grn-- 1 ; (the available heat 
in the mixture is about lOO.lgm- so the overall 

efficiency is ten percent). Such particle sizes require 
differential velocities of order 4 x 103cm s- ’ if they 
are produced by boundary-layer stripping [14], 
which in turn implies pressures at the C-J plane of 
-30 bars (since c2 = PV’IAV). (The energy in the 
vapour (PAV. L/RT) is then -., l/3 that in the water 
which is not inconsistent with the value of If5 found 

by Board et al.) These results are in encouraging 
agreement with those found in typical metal/water 
explosions, and strongly suggest that several features 
of such interactions might be predicted by a non- 
equilibrium ‘vapour-detonation’ model. Such a mo- 
del is however, sensitive to details of vaporisation 
rates and fragmentation dynamics (see Appendix B), 
but these data can be found experimentally. We hope 
to develop this analysis further for application to our 
recent series of tin/water experiments. 

It is clearly of importance to know whether such 

vapour blanketing behaviour is possible in systems 
where the coolant has high conductivity, most 
importantly the sodium/UO)z system. This differs 
from the majority of metal,/water systems in that the 
contact temperatures are sub-critical and so wetted 
layers of coolant will probably be left on the fuel 
surface when vapour is nucleated. The evaporation 
of these layers enhances heat transport out of the fuel 
into the vapour, and on their dkippcdr2inCe some 
measure of condensation appears very likely. This 
behaviour, if coherent within the medium, could be 
sufficient to compensate for the continuing expan- 
sion of the liquid coolant and allow the formation of 
a sonic plane. Detailed heat transfer data may be 
required to resolve this important question. 

We can express the equations of 2-D flow in a form 
analogous to those of 1-D flow, for flow on the axis 
of symmetry 0’ = 0) (see Appendix A, Fig. Al). These 
equations (C9, ClO) are given in Appendix C as 
relations between state s just behind the shock and 
statefat the C-J plane. (The initial state i and state s 
are of course related by the normal 1-D shock 
relationship.) 

P 

I 

v 

FIG. t. Detonation Hugoniot and path of the reaction in 
sub-critical 2-D flow. 

I 
I 
I 

ps k 

Speaflc volume, V 

FIG. 2. Path on (P,V’) diagram of unit mass in a vapour 
detonation (Fig. Bl) with respect to a curve of constant 

vapour mass m, (a displaced hyperbola); thus 0’7” = TQ. 

The first of these equations can be approximated 

for thermal explosions, where the (P, V) terms are 
small compared with the enthalpy terms, by 

h,--h,-h,-h,-0, 

and so is unchanged by the sideways flow. 

(3) 

When internal disequilibrium effects are not 

important, and the coolant temperatures are below 
critical, the curves (Hugoniots) defined by (3) fall 
into two distinct regions in the P, V plane; one 
region is a line nearly parallel to the V axis, and 
represents the highly compressible behaviour of the 
mixture when vapour is present--the other region is 
a line nearly parallel to the P axis, representing the 
very incompressible behaviour when ail the vapour is 
condensed ; at the junction between these two 
regions the speed of sound changes very rapidly. In 
the absence of sideways flow, the usual graphical 
method for finding the C-J state [5] shows this to be 
in this transition region (Fig. I, line AA, tangent to 
the Hugoniot) for a wide range of initial conditions 

(Pi> Y). 



The propagation of large scale thermal explosions 1087 

With sideways flow the path of the reaction on the 
(P, I’) diagram is no longer a straight line (line BB); 
it follows from Euler’s equation (C27) that 

dP V dj2 
-~=j’+~z, (4) 

where j = pu is the local flux. This slope of the 
reaction path (BB) is always less than j: (the flux 
through the shock, line CC), and decreases steadily 
with increasing K 

Now for nearly 1 -D flow, we expect that the 
reaction will nearly go to completion (only near the 
end of the reaction will heat transfer drop to a level 
at which its effects are comparable with those of the 
small amounts of sideways flow (Fig. 1)). Moreover 
the reaction will still terminate in the transition 
region of the Hugoniot since the velocity of sound 
changes rapidly there. We conclude therefore, from 
Fig. 1, that the principle effect of small amounts of 
sideways flow is to leave the C-J state nearly 
unchanged but to reduce the peak pressure P, just 
behind the shock. 

Increasing the amount of sideways flow decreases 
the pressure difference (P, - Pr) across the wave (and 
also makes the detonation less efficient). Since it is 
this difference which reaccelerates the flow it must be 
positive if the wave is to be sustained-.if this is not 
so the detonation must certainly fait (cf chemical 
case). Now from equation (ClO) 

and so detonation propagation can only occur if 
(@I” - V,) > 0; since 0 z exp (- f/r), then 

1 v, -<ln -. 
r !> v, 

(5) 

(Here r is the radius of curvature of the surface 
orthogonal to the flow and 1 is the distance from 
shock to C-J plane-their ratio is thus a measure of 
the sideways constraint.) 

For the case of the vapour blanketed model given 
in Appendix B we may develop this result further. 
Substitution of (4) into (B3) shows the flow to be 
sonic when 

(We have again assumed liquid phase expansion is 
negligible compared with the vapour volume AV and 
that P, >z Pi.) 

Now from (5) 

it follows that 

L,Z 
r v,’ (7) 

the propagation criterion (P,> P,.) is simply related 
to the initial vapour fraction. 

Equations (5) and (7) show that the degree of 

constraint (t/r) required for detonation is high when 
the expansion (V, - V’) driving the explosion forward 

is low, Now V/AI, is typically of order a few, and the 

radius of curvature r is of the same order [ 123 as the 
thickness of the reaction layer, (K, Fig. Al) so that 
this layer must be several reaction lengths thick if 
propagation is to proceed by detonation. Such a 
detonation criterion seems consistent with experi- 
ment. Explosions in relatively unconstrained geom- 
etries (such as when the materials are in a shallow 

layer - a few cm), have often failed to propagate 

steadily but have apparently progressed between 
sites of low stability under influence of the triggering 
pressure wave [4]. 

4.3 Some comments on the importawe of slip 
The role of slip in producing fine fragmentation 

was emphasised in [S]. Although our original 
estimate of the breakup efficiency provided by these 
mechanisms has been criticized by several authors 
[15, 163, recent experiments at BNL (summarised in 
[3]) seem to confirm our original suggestions. 

We concern ourselves now with the effect of slip 

on the C-J condition. 
A consideration of the relative magnitudes of heat 

and momentum transfer suggests that, for any 
individual particle, the momentum would equilibrate 
before heat was transferred; the drag force is of order 
pi(ui --~,)~nr~C,, giving a characteristic decay time 

r2 p2 
-___ 

(% -uz)& 

whilst the thermal diffusion time is 
.? 

r2 
--. 

n2 

For say UO, fragments of radius (r2) 1OOpm in a 

differential velocity (~4% -u2) of 104cms-‘, these 
times are about lo-js and 10-3s respectively. We 

must also consider the time over which fragmen- 
tation takes place. For boundary-layer stripping this 
time is approximately 

3d P2 __ _ 

J U1-% 6%’ 

where d is the unfragmented fuel-particle size (say 
0.2cm, for the typical sodium/UO), flow considered 

above); for this case the time is N 10m4s, which is 
also somewhat shorter than the thermal equilib- 
ration time. (Note that this would not be so if the 
initial particle size were rather larger, or if the 
fragmentation were finer than assumed.) In this case 
there is no slip at the C-J plane, and the integral 
equations appropriate for homogeneous flow apply. 
An interesting problem remains however [17] be- 
cause of the dispersive nature of the speed of sound 
in two-fluid media [IS]. 

Indeterminacy in the gradients of the flow vari- 
ables can be shown (ibid.) to be achieved when the 
flow is choked at the high-frequency speed of sound. 
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However it can also be shown, (following Wood and 
Salzburg [19]) that in a flow in which slip decays 
quickly the flow is sufficiently choked to decouple 
steady-state and expansion zones when it achieves 
the lower speed of sound given by the slope of the 
usual (non-slip) Hugoniot-indeed this is the highest 

speed the flow can reach in the steady-state region. 
Although this result means that in such cases the 
simple single-fluid analysis is justified, it suggests 
that in general the problem when slip is significant is 

a complex one, which is not truly time-stationary 
(because the flow is not choked at all frequencies). 

Numerical calculations which allow the stability of 
the solution to be tested by including time variation, 
may be the only satisfactory way of dealing with this 
case, [and are indeed in hand at various centres, e.g. 
by Scott (Grenoble), Jacobs [20] and Bankoff and 
Sharon, (North-Western University)]. 

5. CONCLUSIONS 

We suggest that all steadily propagating thermal 
explosions have structures analogous to chemical 
detonations; that is, they have a steadily propagating 

zone headed by a shock, and terminated by a sonic 
(CJ) plane. 

The wide variation of efficiency can be explained 
by considering the balance condition at the C-J 
plane in 2-dimensional two-fluid flow, in which the 

phases are not necessarily in internal thermodynamic 
equilibrium. We have examined the nature of these 
flows in a few simple cases and these suggest: 

(a) Non-equilibrium effects due to the production 
of vapour from a low conductivity coolant could 
result in stable detonating explosions of quite low 

efficiencies. 

A model of such non-equilibrium behaviour has 

been developed, which shows that the vapour 
volume at the sonic plane is about half the initial 
vapour volume. Using this model and data from 
transient boiling experiments gives results (e.g. 

efficiences - 10%) consistent with metal/water ex- 

plosion data. 

Whether such non-equilibrium effects are signi- 
ficant in high conductivity systems (e.g. So- 
dium/UO,) needs further investigation. 

(b) The effects of sideways flow may be straightfor- 
wardly accounted for. Small amounts of sideways 
flow reduce the pressures immediately behind the 
shock without changing too much the final CJ 
condition. 

A large flow divergence however would cause 
detonation failure-this would probably arise when 
the depth of the reacting layer was less than several 
times the length of the reaction region (i.e. the length 
between shock and CJ plane). 

(c) Slip may not be of importance (at the C-J 

plane) in sodium/UO, flows if the fuel after fragmen- 
tation is coarser than -30 pm. However, the 

analysis of flows in which slip is important at the 
CJ plane is complicated by the rather complex 
choking condition, and is probably best done 
numericallyPit seems preferable that such calcu- 
lations allow for time varying flows however, to 
check the stability of the final solution. 
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di”(~~~)+~~ = O+[&], (A2) 

where ti is the interphase mass flux/unit control volume. 
Each material has an equation of state of the form: 

dP = c*dp+cdS+[ldM’], 

where 

dP 

u = as P,M.’ (A3) 

and S is the specific entropy of the phase. 
The mass of each phase in unit volume (ap) is subject to 

a share of the pressure field proportional to its volume 
@grad P), a force due to its share in changing the momen- 
tum of the transferred mass, (z’& and an interphase drag 
force (which is oppositely directed on the other phase), F: 

APPENDIX A 

THE C-J CONDITION IN Z-FLUID 

Z-DIMENSIONAL REACTIVE FLOW 

We consider a layer of fuei~cooiant mixture lying on a 
solid bottom and an explosion front moving steadily 
through the slab; this geometry is similar to that of the 
Winfrith THERMIR experiments [9]. We consider a two- 
dimensional section with the x-axis in the direction of 
propagation, and the y-axis out of the mixture. We will 
assume that the pressure front as well as being supersonic 
with respect to the mixture itself is also supersonic in the 
tluid above (Fig. Al) so that the pressure ahead of the shock 
is unchanging. (Gas and vapour bubbles rising from the 
mixture region will probably ensure this in practice.) 

The general thermal explosion problem is multiphase; 
coolant vapour and liquid, and fragmented and un- 
fragmented fuel are usually at different temperatures and 
velocities. The approximation scheme used to reduce the 
problem to two fluids only depends on the relative 
magnitude of the interphase equilibration times (see 3(iii)). 
Mass transfer, due to fuel fragments reaching velocity and 
temperature equilibrium with the coolant, is usefully 
included in calculations of conditions at the C-J plane if 
fragmentation time is long compared with those for thermal 
and velocity equilibration of the fragments (as in the 
models of Scott (private communication) and Bankoff and 
Sharon (North-Western University)). 

We here identify two fluids, phase 1 being the volatile 
one. We allow for mass-transfer between the fluids, but 
bracket such terms [thus] for clarity. The conservation 
equations for such a system have been given by say 
Ishii [21 J. 

Let tit, zz be the volume fractions of each phase, so that 

d(, +ff, = 1. (Al) 

apg+F+czgrad(P)= O+[t’ti]. (A4) 

Here we take F and &f as positive on phase 1. 
Heat is conducted across the interfacial area A per unit 

volume at a rate A@, and convected across by mass transfer 
at a rate u&f. Accordingly, 

We specialise these equations to the s axis (y = 0) of the 
steady-state region, so that a/& = 0, and aY( = w) = 0. 

Fu~hermore, we assume F, A. a, @ do not depend on 
%/i?x etc. 

Moreover 

D d 
-+a--, 
Dt 8.x 

and by symmetry, 

The equations of continuity for each phase (A2) are thus 

and may be written (using A3, A5 to eliminate dp/&) as 

Shock _.* 

FIG. Al. Geometry of 2-fluid 2 -D detonation model. 
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[I;, i p, 

Distance m frame of front 

> 

FIG. Bl. Behaviour of unit mass on passage through front 
of ‘vapour-detonation’ model. 

Substituting for 

?a 1 F i?P 
_=_ 
6.x pu i 

*;-g 

and noting 

irr, &, -= _~ 
(‘.x 3.x 

we may arrive at the following expression for the pressure 
gradient: 

Here 

and 

K ,r,/,m are the differences of the bracketed quantities for 
phase 1 and 2 [i.e. (A,): = A, -A*]. 

The denominator of this expression is clearly a generali- 
sation of the speed of sound. When u, = u2 it corresponds 
to the well-known ‘stratified speed of sound’ [22]. The four 
terms of the numerator are respectively the components of 
the pressure gradient due to heat transfer, interphase drag, 
flow divergence and effects of mass transfer. 

The heat transfer term is positive (and thus gives a 
negative pressure gradient) in all subsonic flows of interest 
to us. The flow divergence term is of opposite sign, since 
C?w/Zy is positive [23]. The drag term requires more careful 
consideration; if phase 1 be the lighter phase (pi <pz) then 
in the frame of the shock u, < id2 and so F, < 0. Accordingly 
we expect pitr: < 02t(z everywhere and the interphase drag 
thus always opposes heat transfer -this conclusion agrees 
both with calculation (by say Kreibel [24] on shock-waves 
in a dusty gas) and nozzle-flow experiments using bubbly 
liquids [25]. The mass transfer terms may be adequately 
represented as additional contributions to the heat transfer 
(1st and 3rd terms in K,) and interphase drag (2nd term in 

K,). 

Finally, we note that for the single-phase, 1 -D flow 
approximation the equation A8 simplifies considerably to 

dP 
-= 
dx 

APPENDIX B 

(*lo) 

A ‘VAPOUR-DETONATION’ MODEL, WITH 
THERMAL DISEQUILIBRIUM IN THE COOLANT 

We consider the dynamics of a region containing unit 
mass of fuel and coolant, with interracial area A after 
fragmentation. 

This volume passes through the following sequence of 
events, (Fig. Bl): 

(a) Initial state i. The initial pressure is P,; this is 
assumed much less than any other pressures considered. 

The fuel volume is F, and will not change significantly. 
The initial vapour volume is AK and the initial coolant 

volume v’ ; its temperature is Ti, and the fuel temperature 
is T,. The detonation velocity is D. 

Clearly 

v, = l++F+AC: 

(b) Immediately behind the shock the material is in state 
s. We assume that all vapour has been condensed in the 
shock but the coolant has not been significantly compre- 
ssed. The pressure is P, and so 

P,-P, D2 
-=j2=- [5] 

AK lq ’ 
(Bl) 

The interface temperature rises to T,, the contact value, 
but the pressure exceeds the saturation pressure P<(T,) and 
so a period of liquid-phase expansion begins. We assume 
that the growing thermal boundary layers in the coolant 
are too thin and far apart to interact with each other. 

(c) In state c the pressure has fallen to P, and vapour 
generation can start. The liquid has expanded to Vi and a 
time rC has elapsed since the material passed through the 
shock front. The deposited heat is 

where K is the conductivity, 0~’ the diffusivity. 
The expansion of the liquid phase is 

v,_v~,=~(T,-T) ‘Z 
c .\ c,T - J KU ’ WI 
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where /I is the expansion coefficient, c’ the coolant specific 
heat. 

(d) Growth of the vapour blanket then ensues until the 
flow reaches sonic velocity at statef: We consider this stage 
in detaif. 

The heat flux leaving the fuel is Q,,; this flux can be 
divided into some fraction Q, which goes into vapour 
generation (at a rate ti) and raising the temperature of the 
vapour, and remainder Q, which is conducted away into the 
coolant ; 

Qh-Q,=Qc=Lti+C;.%, (83) 

where L is the latent heat of vaporisation and C:, the heat 
capacity of the vapour. (We have assumed that all the 
vapour is at the interface temperature 7; to evaluate the 
heat capacity term which is in any case small.) 

Qt causes liquid phase expansion at a rate 

fi’ = ;Qe 
I 

Now m = ;, P = f’(T) 

and moreover 

dP _ 
-& = -j”. 

Thus we may express P, V= Ai/+ V’ and hence $7 in terms 
ofi‘: 

. CI,PAV 
+T---. (84) 

(The LHS now contains no D/Dt terms.) 
Clearly T (and hence P, ti) is indeterminate when both 

(i) the LHS vanishes and (ii) 

which identifies the choking condition. In the absence of 
significant liquid phase expansion condition (i) becomes Q, 
=0, a result analogous to (A@)=0 (see AfO) when the 
vapour is the only working fluid. We consider (B5) further. 

Now P-Arm& andso 

dP 
_-__->>_ 
dT RTT T 

WI 

Actiordingfy 

PII/: u;,---- 
AV, ’ WI 

and so 

P,-P, Pf Pf 

Vr_*~dl/,--d~+v;--~~ =j2 = 7’ 
(W 

From these equations we see that, when the liquid phase 
expansion is small 

2AV’*Af$ and P,- 2P,. (f39) 

This simple result can be illustrated on the (P, V) diagram 
by considering curves of (P, V) states having the same 
vapour mass m (Fig. 2); (Hugoniots lose their usefulness in 
non-equilibrium situations, since h is not uniquely related 
to (P, V)). These curves are of the form 

@IO) 

The initial state i lies on the P-O axis, whilst the shock 
state s (and state c) lies near V- V’, (this being the form of 
(BlO) when m -0). The flux-line dP/dV= -j2, is tangent to 
a curve of constant at at P,, V,. because Dm/Dt = 0 at the 
C-J (f) state. Now (BIO) is nearly the equation of a 
displaced hyperbola (since 7% In(P) only), and (B9) 
follows from this geometry. 

We now consider further the conditions an explosion 
must satisfy if it is to propagate stably satisfying equation 
(B9). The vapour volume AV is the product of the 
interphase area A and the vapour blanket thickness t’. We 
assume that fragmentation is complete by the C-J plane; in 
this case we may use the data from transient heating of thin 
foils (e.g. [13]), for predicting the value t’ = t; at which Qh 
and QI balance (typically 10~ at 10 bars). A full description 
of the process by which this balance occurs cannot 
presently be given, but it seems likely that if the coolant 
makes contact with the freshly generated surface area, it 
will start by nucteate boiling before reaching film boiling. 
The fo~ation of micro-layers and the effects of nu~feation 
delays ensure Q, greatly exceeds Q, in the nucleate boiling 
stage. However, when the coolant layer wetting the fuel or 
any superheated layer in the bulk liquid are evaporated, Q,, 
falls rapidly, instantaneously balancing with Qt before 
falling below it. The flux Q1 into the liquid coolant is 
probably controlled by the degree of subcooling and so will 
be quite sensitive to pressure. We may approximate the 
overall behaviour by 

r; x pi”, where 1 >nr>O. (Bfft 

(We do not expect t> to be influenced by the volume V’ 
because the thermal boundary layers around each particle 
are too thin to interact with each other.) 

Turning now to the fragmented area A, we can consider 
two limiting cases. If the area generation is limited by 
energy considerations (T. P. Fishfock, Winfrith, private 
communication), so that Aa - p(u, -u2)*, we may expect 
the area to change quite rapidly with pressure (+P+’ 

since ui- u, _ J-- P-Al: dnd a, -uz 5 I(~- U, if one phase is 
heavy). Conversely, in fully developed boundary-layer 
stripping the thickness of the boundary layer, 6. and hence 
the size of the stripped particles is [ 141: 

‘I3 (u, -a,). (Bf?) 

This implies a very weak variation with pressure 
(- Pl+). 

A general variation for A would thus be 

Arx(P,AV)” where O<n<f. 

Combining (9, 11 and 13), we find that 

(Bf3) 

p, x (AL\V)(“-ll!l”t-nl (Bl4) 

Now for stability (At;,) must decrease with pressure, (see 
Appendix D), and so we have tn--II > 0. Therefore this 
model predicts that the generated pressure Pf will fall with 
increasing initial void fraction AK. 

APPENDIX C 

SOME EQUATIONS OF TWO-DIMENSIONAL. 
SINGLE-FLUID FL.OW 

The equations of steady 2-D flow can be written 

(Cl) 

((3 

(C3) 
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where t.’ = 11’ + w’. (C4) 

The terms bracketed [ ] disappear on the x-axis (which 
is an axis of symmetry. Fig. Al). 

We consider further the Row close to the axis and we 
follow Cowperthwaite [23] in defining a quantity 0 which is 
the inverse ratio of the area of a pencil of particle paths, 
centred about the u-axis at some point in the reaction zone, 
to its area just ahead of the shock. 

Clearly U-‘pr =,ji is constant, and 0 is related to the 
divergence of the flow by 

H=exp(- _r$df)=exp(- 1:). (CS) 

Here we have used c’w/i~ = + tc;r. where I’ is the radius of 
curvature of the s&ace orthogonal to the Row. 

(Note that this differs from Cowperthwaite’s result by a 
factor of 2 because we consider a slab geometry, whilst he 
considered a radially symmetric geometry.) 

This substitution also allows him to rewrite the energy 
equation of the flow (C4) as 

Now Euler’s equation (C?) can be written: 

and so P,- P,=j,(tr, -iii) $ say, 

this allows us formally to write 

(C7) 

k-h,= 
I P,-Pi 

i i 
-- ~- @V,+ t;), 

2, IL 
(C9) 

Fj_Pi : 
_._. -) (l+l)r/r) =,jf where L’= f. 

ti ’ 
(Cl()) 

(We note that both I/ and fl-+ 1 when V--e;o and so the 
equations reduce to the 1 -D expressions when the flow 
divergence is small.) We may approximate $, @ if we 
consider, instead of state i just ahead of the shock, the state 
s just behind it. States i and s are related by the normal 
I -D expressions because there is no flow divergence across 
the shock. We may then assume r, ?u/?.x are constant 
between states s and ,j to approximate 0 as exp (-l/r) and 
$ as 

(Here 1 = x--s, is the length of the steady-state reaction 
zone.) 

APPENDIX D 

THE QUESTION OF STABILITY OF A 
STEADY STATE DETONATION 

We review first the reason why a C-J detonation with 
complete energy transfer is normally stable against small 
perturbations in its velocity of propagation. 

In the C-J steady state the energy transfer behind the 
shock is just sufficient to re-accelerate the Row to sonic 
velocity at the end of the steady state region. If the mass 
flux (j) were increased slightly, (but slowly compared with 
the time for material to traverse the front) the shock 
pressure would rise and the Mach number of the flow 

behind the front would fall. The energy transfer would be 
insufficient to re-accelerate the Aow to sonic velocity and at 
the end of energy transfer the flow would still be subsonic. 
Although such a wave could exist if there were a ‘piston’ of 
high pressure gas behind the wave to ‘support’ the 
detonation, there is in general a rarefaction wave im- 
mediately behind the steady state region; if the Row were 
subsonic this would progress forward and weaken the 
shock front. The rarefaction wave would thus reduce the 
velocity of propagation of the shock, decreasing it towards 
its original value--the flow is therefore stable. Conversely, 
decreasing j leads to the flow reaching sonic velocity with 
heat transfer still occurring. In steady state this would lead 
to a discontinuity in the Row, which would propagate back 
upstream and increase j back to its unperturbed value. 

Now consider the case of partial energy transfer; if we 
increase the mass flux into the shock we reduce the Mach 
number of the flow, but change the expansion energy 
available for re-accelerating it (this change would in general 
be an increase, e.g. because of increased fragmentation). If 
this increase is suficicnt to accelerate the flow to above 
sonic velocity, the Ilow is unstable because such a situation 
leads to further increase in j. 

FIG. Dl. Illustrating the stability criterion for a ‘vapour- 
detonation’ (-. -. joins states for which the vapour 

generation rate, ril = 0). 

We can analyse this situation graphically for the model 
of Appendix B say by considering the set of P-V curves for 
differing vapour masses (Fig. Dl). 

We can then mark on these the locus of those states 
which have the equilibrium vapour blanket thickness (line 
BC). In general one of these will be a C-J state (B). Now 
perturb the flow to some higherj (point C say). In the case 
shown, the vapour volume (which is a product of the 
fragment area and the new equilibrium blanket thickness) 
reaches its equilibrium value when the Row is still subsonic. 
The detonation will thus decay back to the unperturbed 
state B. We see that stability requires the equilibrium 
vapour volume (line BC, Fig. Dl), to decrease with pressure 
more rapidly than the C-J volume (line BD). 

For the model of appendix B the line BD is vertical (C-J 
vapour volume equals half of the initial vapour volume) 
and hence the condition for stability is that the equilibrium 
vapour volume should fall with pressure. 

We note in passing that instability of the flow against 
slow perturbations in detonation velocity is not the only 
possible mode. Chemical detonations are, for instance, 
prone to the growth of acoustic waves within the reaction 
region [26] which modify the flow into a 3-D structure; 
this m~ification however does not seem to affect the 
usefulness of the 1 -D analysis for describing the overall 
propagation. 
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PROPAGATION DES EXPLOSIONS THERMIQUES A LARGE ECHELLE 
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Rhm&-On suggtre, a partir de l’tvidence thiorique et experimentale, que toutes les explosions 
thermiques a grande echelle ont une structure semblable a la detonation. On examine les effets dune telle 
detonation thermique sur l’ecoulement, le glissement de l’interface, l’expansion thermique du refrigerant et 
on considere le biian de ces effets dans la zone de reaction ou I’ecoulement devenant sonique contrBle la 
propagationet parsuite~effi~cit~de~explosjon. 

On montre que: 
(a) Les explosions thermiques (comme les explosions chimiques) se propagent seuiement si la 

contrainte est elevee: 
(b) Dans une detonation avec vapeur creee dans la region de reaction (une detonation avec vapeur), 

I’efficacite peut etre faible. On applique un modele de ces explosions metal/eau et Ton montre qu’il en 
prtdit les caractiristiques gtntrales. 

DIE AUSBREITUNG GROSSRAUMIGER THERMISCHER EXPLOSIONEN 

Zusammenfassung-Wir sind der Meinung, dag nach dem gegenwartigen Stand der theoretischen und 
experimentellen Erkenntnisse alle sich gronraumig ausbreitenden thermischen Explosionen einen 
detonationsartigen Charakter haben. Wir untersuchen den Einflull von Seitwartsstromung, Schlupf 
zwischen den Phasen und der thermi~hen Expansion des K~himittels auf eine solche thermische 
Detonation; das Zusammenwirken dieser Effekte an der Stelle der Reaktionszone, wo Schallges~hwindig- 
keit herrscht. bestimmt die Ausbreitung und damit die Wirksamkeit der Explosion. Wir zeigen, daR: 

(a) thermische Explosionen (wie chemische Explosionen) sich nur dann ausbreiten, wenn der seitliche 
Widerstand groD ist, 

(b) die Wirksambeit von Detonationen, bei welchen in der Reaktionszone Dampf/erzeugt wird 
(Damp&Detonationen). gering sein kann. 

Wir wenden ein derartiges Model1 auf Metall~~~sser-~xplosionen an und zeigen, daB es das ailgemeine 
Verhalten solcher Vorgange beschreibt. 

PACHPCKTPAHEHHE KPYHHOMACBITAEHbIX TEHJfOBbfX B3PbIBOB 

Alum - Ha O~HO~HNH n~~cTaE~eHH~x B pa6ore TeoperHrecKux w 3Kcnep~eHT~~bH~ 
namibfx cnenauo n~~nono~eH~e 0 ~eToHau~onH0~ c~pyicrype ncex KpynHoMacm~6H~ pacnpo- 
CT~HSllolUHXC2l TenJIOBbIX B3ptiBOB. B pa6OTe WCCJIeLlOBaJTOCb BJIHRHIIe Ha TaKyfO Ti%UiOB)‘EO IleTOHa- 

UUKI 6OKOBbIX IlOTepb,McX+a3HOl-0 CKOJXbXWHKSl B TepMWECKOrO ~CIIlH~HUn. CyMMapHOe BJlWRHHe 

3TWX 3@&KTOB B MeCTe IPZ+EXOna nOTOKa B 3ByKOBOti B ~aKI.WOHHOii 30He OQ,W,eJIaeT PC- 

npOCTiXSHeHHe,a CncnOBaTc~bHO,H~~cKTHBHOCTb B3pbIBa. 

~OKa3aHO,~TO(U)TWIJlOBbl~ B3pbIBbI (nono6so XHM~~eCK~M)~Cnp~T~HatoTCX TOnbKO BCJIy'iae 

iianmnin OWHb He3HaYHTeJlbHblX ~OKOBLSIX IiOTepb; (6) npa neT0HaUHw C o6pa3osamieM nap B 

fi,W#3IaX ~aKUHOHH0~ 06JlaCTH (~~na~~~ ~eTOHaU~a~~) ~KT~BH~b B3pblBa M0XCe-f 6bITb 

HesHawrenbHoE. Ha npnh+epe npabfeneiina bionene 3~oro npouecca K cnysaro 83pm0a B cHcTeMe 

MeTann-aona noKa3aH0,YTOC nOMOlubKJ RawHot% Monenw MOmHO FW2OfTaTb ohwe XaPaKTepHCTHKH 

yKa3atimx npoueccoe. 


